Bascom Serial Port Interrupt

Bascom Serial Port Interrupt Rating: 4,8/5 8434reviews
Bascom Serial Port Interrupt

Dec 19, 2014 Penjelasan bagaimana cara mengaktifkan interrupt saat ada data serial masuk, for more information contact me Yanuarm@hotmail.com. Hello, Prints 'hello world' to the terminal ( RS232 port ). I2c, Block read/write from/to EEPROM using I2C. Include, Including other files in BASIC programs. Incr, Increments a variable. Inkey, Reads a value from the serial port. Input, Inputs data from RS2323 serial port to a variable. Int0, Interrupt handler demo for INT0 of 8051.

When writing a program for microcontroller (also often called firmware) it is very useful to have communication with microcontroller. In this way you can give command and get feedback from microcontroller about current state and readings. This can be done by several integrated peripherals that are used for communication. One is especially convenient because every PC has serial port and that peripheral is UART (Universal Asynchronous Receiver Transmitter). It is asynchronous communication and basic configuration that is most often used needs only two pins. These are TX and RX.

For more information on. When using UART module, you will need to setup few registers. These registers are: UCSRA, UCSRB, UCSRC, UBRRL and UBRRH USART Control and Status Register A – UCSRA • Bit 7 – RXC: USART Receive Complete This flag bit is set when there are unread data in the receive buffer and cleared when the receive buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled, the receive buffer will be flushed and consequently the RXC bit will become zero.

Bascom Serial Port Interrupt

Driver Axioo Pico Pjm M1100 Windows 7 Xp Vista. The RXC Flag can be used to generate a Receive Complete interrupt (see description of the RXCIE bit). • Bit 6 – TXC: USART Transmit Complete This flag bit is set when the entire frame in the transmit Shift Register has been shifted out and there are no new data currently present in the transmit buffer (UDR). The TXC Flag bit is automatically cleared when a Transmit Complete interrupt is executed, or it can be cleared by writing a one to its bit location.

The TXC Flag can generate a Transmit Complete interrupt (see description of the TXCIE bit). • Bit 5 – UDRE: USART Data Register Empty The UDRE Flag indicates if the transmit buffer (UDR) is ready to receive new data. If UDRE is one, the buffer is empty, and therefore ready to be written.

The UDRE Flag can generate a Data Register Empty interrupt (see description of the UDRIE bit). UDRE is set after a reset to indicate that the Transmitter is ready. • Bit 4 – FE: Frame Error This bit is set if the next character in the receive buffer had a Frame Error when received. For example, when the first stop bit of the next character in the receive buffer is zero. This bit is valid until the receive buffer (UDR) is read.

The FE bit is zero when the stop bit of received data is one. Always set this bit to zero when writing to UCSRA. • Bit 3 – DOR: Data OverRun This bit is set if a data overrun condition is detected. A Data OverRun occurs when the receive buffer is full (two characters), it is a new character waiting in the receive Shift Register, and a new start bit is detected. This bit is valid until the receive buffer (UDR) is read. Always set this bit to zero when writing to UCSRA. • Bit 2 – PE: Parity Error This bit is set if the next character in the receive buffer had a Parity Error when received and the parity checking was enabled at that point (UPM1 = 1).

This bit is valid until the receive buffer (UDR) is read. Always set this bit to zero when writing to UCSRA. • Bit 1 – U2X: Double the USART Transmission Speed This bit only has effect for the asynchronous operation.

Write this bit to zero when using synchronous operation. Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively doubling the transfer rate for asynchronous communication. • Bit 0 – MPCM: Multi-processor Communication Mode This bit enables the Multi-processor Communication mode.

When the MPCM bit is written to one, all the incoming frames received by the USART Receiver that do not contain address information will be ignored. The Transmitter is unaffected by the MPCM setting. Wii Crack Games Download. For more detailed information see “Multi-processor Communication Mode” in microcontroller datasheet.

USART Control and Status Register B – UCSRB • Bit 7 – RXCIE: RX Complete Interrupt Enable Writing this bit to one enables interrupt on the RXC Flag. A USART Receive Complete interrupt will be generated only if the RXCIE bit is written to one, the Global Interrupt Flag in SREG is written to one and the RXC bit in UCSRA is set. • Bit 6 – TXCIE: TX Complete Interrupt Enable Writing this bit to one enables interrupt on the TXC Flag. A USART Transmit Complete interrupt will be generated only if the TXCIE bit is written to one, the Global Interrupt Flag in SREG is written to one and the TXC bit in UCSRA is set. • Bit 5 – UDRIE: USART Data Register Empty Interrupt Enable Writing this bit to one enables interrupt on the UDRE Flag.

A Data Register Empty interrupt will be generated only if the UDRIE bit is written to one, the Global Interrupt Flag in SREG is written to one and the UDRE bit in UCSRA is set. • Bit 4 – RXEN: Receiver Enable Writing this bit to one enables the USART Receiver. The Receiver will override normal port operation for the RxD pin when enabled. Disabling the Receiver will flush the receive buffer invalidating the FE, DOR, and PE Flags. • Bit 3 – TXEN: Transmitter Enable Writing this bit to one enables the USART Transmitter.

The Transmitter will override normal port operation for the TxD pin when enabled. The disabling of the Transmitter (writing TXEN to zero) will not become effective until ongoing and pending transmissions are completed, (i.e., when the transmit Shift Register and transmit Buffer Register do not contain data to be transmitted). When disabled, the Transmitter will no longer override the TxD port. • Bit 2 – UCSZ2: Character Size The UCSZ2 bits combined with the UCSZ1:0 bit in UCSRC sets the number of data bits (Character Size) in a frame the Receiver and Transmitter use. • Bit 1 – RXB8: Receive Data Bit 8 RXB8 is the ninth data bit of the received character when operating with serial frames with nine data bits.

Must be read before reading the low bits from UDR. • Bit 0 – TXB8: Transmit Data Bit 8 TXB8 is the ninth data bit in the character to be transmitted when operating with serial frames with nine data bits. Must be written before writing the low bits to UDR. USART Control and Status Register C – UCSRC • Bit 7 – URSEL: Register Select This bit selects between accessing the UCSRC or the UBRRH Register.

It is read as one when reading UCSRC. The URSEL must be one when writing the UCSRC. • Bit 6 – UMSEL: USART Mode Select This bit selects between asynchronous and synchronous mode of operation.

UMSEL Bit Settings • Bit 5:4 – UPM1:0: Parity Mode These bits enable and set type of parity generation and check. If enabled, the Transmitter will automatically generate and send the parity of the transmitted data bits within each frame. The Receiver will generate a parity value for the incoming data and compare it to the UPM0 setting. If a mismatch is detected, the PE Flag in UCSRA will be set. UPM Bits Settings • Bit 3 – USBS: Stop Bit Select This bit selects the number of stop bits to be inserted by the Transmitter.

The Receiver ignores this setting USBS Bit Settings • Bit 2:1 – UCSZ1:0: Character Size The UCSZ1:0 bits combined with the UCSZ2 bit in UCSRB sets the number of data bits (character size) in a frame the Receiver and Transmitter use. UCSZ Bits Settings • Bit 0 – UCPOL: Clock Polarity This bit is used for Synchronous mode only. Write this bit to zero when asynchronous mode is used. The UCPOL bit sets the relationship between data output change and data input sample, and the synchronous clock (XCK). UCPOL Bit Settings USART Baud Rate Registers – UBRRL and UBRRH The UBRRH Register shares the same I/O location as the UCSRC Register as described abowe but that is handled by Codevision compiler • Bit 15 – URSEL: Register Select This bit selects between accessing the UBRRH or the UCSRC Register. It is read as zero when reading UBRRH. The URSEL must be zero when writing the UBRRH.

• Bit 14:12 – Reserved Bits These bits are reserved for future use. For compatibility with future devices, these bit must be written to zero when UBRRH is written. • Bit 11:0 – UBRR11:0: USART Baud Rate Register This is a 12-bit register which contains the USART Baud Rate. The UBRRH contains the four most significant bits, and the UBRRL contains the eight least significant bits of the USART baud rate. Ongoing transmissions by the Transmitter and Receiver will be corrupted if the baud rate is changed.

Writing UBRRL will trigger an immediate update of the baud rate prescaler. As you can see there are many possible options but do not worry, most of them are rarely used and in specific situations. Typical configuration is next one: // USART initialization // Communication Parameters: 8 Data, 1 Stop, No Parity // USART Receiver: On // USART Transmitter: On // USART Mode: Asynchronous // USART Baud Rate: 9600 UCSRA=0x00; UCSRB=0x98; UCSRC=0x86; UBRRH=0x00; UBRRL=0x33; It is important to set desired baud rate so that communicating devices can understand each other.

Calculation for correct baud rate is given below. Examples of Baud Rate Setting For standard crystal and resonator frequencies, the most commonly used baud rates for asynchronous operation can be generated by using the UBRR settings in Table below. Equations for Calculating Baud Rate Register Setting The baud rate is defined to be the transfer rate in bit per second (bps). BAUD Baud rate (in bits per second, bps) fOSC System Oscillator clock frequency UBRR Contents of the UBRRH and UBRRL Registers, (0 - 4095) UBRR values which yield an actual baud rate differing less than 0.5% from the target baud rate, are bold in the table. Higher error ratings are acceptable, but the Receiver will have less noise resistance when the error ratings are high, especially for large serial frames.